Thirteen Novel Cycloartane-Type Triterpenes from Combretum quadrangulare

Arjun H. Banskota, ${ }^{\dagger}$ Yasuhiro Tezuka, ${ }^{\dagger}$ Kim Qui Tran, ${ }^{\ddagger}$ Ken Tanaka, ${ }^{\S}$ Ikuo Saiki, ${ }^{\dagger}$ and Shigetoshi Kadota*,†
Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630-Sugitani, Toyama 930-0194, J apan, National University Ho Chi Minh City, Ho Chi Minh City, Vietnam, and National Research Institute of Police Science, 6 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, J apan

Received J uly 9, 1999
Thirteen novel cycloartane-type triterpenes were isolated from Combretum quadrangulare, a Vietnamese medicinal plant. The structures of the novel triterpenes were determined by spectroscopic methods as well as by chemical transformations. Among those compounds, quadrangularic acids F (1), G (2), and H (4) and 24-epiquadrangularic acid G (3) are the first examples of cycloartane-type triterpenes bearing carboxylic acid groups at both C-4 and C-20. Furthermore, norquadrangularic acid $\mathrm{A}(\mathbf{1 3})$ is the first example of a trinorcycloartane-type triterpene isolated from the genus Combretum.

Combretum species (Combretaceae) are widely used as folk medicine for the treatment of hepatitis, malaria, respiratory infections, and even cancer in different parts of Asia and Africa. ${ }^{1}$ Combretum quadrangulareK urz is an evergreen tree that grows widely in eastern Asia. Its seeds, leaves, and the stem bark are used in Vietnamese traditional medicine as an antipyretic, antidysenteric, and anthelmintic agent. ${ }^{2}$ In the course of the chemical investigation on Vietnamese medicinal plants, ${ }^{3,4}$ we have recently reported the isolation of seven novel cytotoxic cydoartane-type triterpenes from C. quadrangulare ${ }^{3}$ In this paper we describe the isolation and structure elucidation of 13 additional novel cycloartane-type triterpenes (1-13) from a MeOH extract of the leaves of C . quadrangulare.

Results and Discussion

Air-dried leaves of C. quadrangularewere extracted with MeOH at $80^{\circ} \mathrm{C}$. The dark-green MeOH extract showed a potent hepatoprotective effect on lipopolysaccharide-induced liver injury in D-galactosamine-sensitized mice in vivo. ${ }^{5}$ Interestingly, the same extract also had a cytotoxic effect toward the liver-metastatic murine colon 26-L5 carcinoma in vitro, with an ED 50 value of $75.9 \mu \mathrm{~g} / \mathrm{mL}$. Hence, the MeOH extract was further fractionated into 11 fractions by Si gel column chromatography. Repeated chromatography of fractions 8 and 9 on normal- and reversed-phase Si gel columns, together with preparative TLC, afforded 13 novel triterpenes, named quadrangularic acid $F(\mathbf{1})$, quadrangularic acid $G(2), 24$-epiquadrangularic acid G (3), quadrangularic acid H (4), methyl quadrangularatel (5), quadrangularic acidJ (6), quadrangularic acid $K(7)$, quadrangularic acid L (8), 24-epiquadrangularic acid L (9), quadrangularic acid $M(10)$, 24-epiquadrangularic acid M (11), 7β-hydroxy-23-deoxojessic acid (12), and norquadrangularic acid A (13).

Quadrangularic acid F (1) was obtained as a colorless amorphous solid, and its molecular formula was determined as $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{8}$ by HRFABMS. Absorption bands at 3400 and $1700 \mathrm{~cm}^{-1}$ in the IR spectrum of 1 indicated the presence of hydroxyl and carbonyl groups, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ displayed characteristic signals of

[^0]
2

5

Figure 1. Significant correlations observed in the FG-pulsed HMBC spectrum of compounds 1, 2, and 5. Compounds 2 and $\mathbf{5}$ also showed the same significant correlations in rings A-D as compound $\mathbf{1}$.
a set of cyclopropane methylene protons ($\delta 0.76$ and 0.48 , both $\mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$), two oxymethine protons ($\delta 5.36$, dd, J $=12.0,4.5 \mathrm{~Hz} ; \delta 3.77$, br s), five tertiary methyls ($\delta 1.60$, 1.56, 1.50, 1.34, 1.04), an ester methyl ($\delta 3.66$), and two trans-ol efinic protons ($\delta 6.18, \mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz} ; \delta 6.07$, dt, J $=16.0,7.5 \mathrm{~Hz}$), suggesting that $\mathbf{1}$ is a cycloartane-type triterpene bearing two hydroxyls and a trans-olefin. By treatment with diazomethane, 1 gave a dimethyl ester 1a, indicating the presence of a free carboxylic acid group. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1}$ were similar to those of methyl quadrangularate B (14), ${ }^{3}$ except for the absence of an aldehyde signal and the appearance of an additional carbonyl signal ($\delta 177.8$) in the ${ }^{13} \mathrm{C}$ NMR spectrum. Thus, 1 was considered to be the C-20 oxidized derivative of 14. The presence of a carboxylic acid function at C-20 was further confirmed by the long-range correlations observed in the FG-pulsed HMBC spectrum (Figure 1).

The stereochemistry of $\mathbf{1}$ was determined by NOE experiments and the analysis of coupling constants. The lack of any diaxial coupling of $\mathrm{H}-1$ with $\mathrm{H}-2_{\mathrm{ax}}$ indicated that the hydroxyl group at C - 1 is located in the axial position. This was also supported by the NOE enhancement from $\mathrm{H}-1$ to H-19. The H-3 signal was observed as a double doublet due to diaxial ($\mathrm{J}=12.0 \mathrm{~Hz}$) and axial-equatorial

Scheme 1. $\Delta \delta^{R S}\left(=\delta^{R}-\delta^{S}\right)$ Values Obtained from the ${ }^{1} H$ NMR Spectra of the MTPA Esters 2c and 2d

coupling ($\mathrm{J}=4.5 \mathrm{~Hz}$), suggesting the axial nature of $\mathrm{H}-3$. I rradiation of the methyl protons at $\delta 1.60$ caused an NOE increase of $\mathrm{H}-19$ and vice versa, indicating that the methyl group at C-4 should be in the β position, that is at C-29. Additionally, irradiation of $\mathrm{H}-3$ gave enhancement of $\mathrm{H}-5$, placing them in a 1,3-diaxial arrangement in a chair conformation. Finally, the structure of quadrangularic acid F, including the configuration at C-20, was confirmed to be 1 by sodium chlorite oxidation ${ }^{6}$ of 14 to 1.

Quadrangularic acid G (2), a colorless amorphous solid, was obtained as a monomethyl ester and was easily converted into dimethyl ester 2a with diazomethane. The molecular formula of $2\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{7}\right)$ was cal culated from the quasimolecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$at $\mathrm{m} / \mathrm{z} 555.3272$ in the HRFABMS. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$, the signals of four tertiary methyls, an ester methyl, and two exo-ol efinic protons were observed, in addition to the signals of two characteristic cyclopropane methylene protons. Furthermore, three signals of oxymethine protons at $\delta 5.33,4.46$, and 3.75 in the ${ }^{1} \mathrm{H}$ NMR spectrum suggested the presence of three hydroxyl groups, which was confirmed by acetyIation of the dimethyl ester $\mathbf{2 a}$ into a triacetate $\mathbf{2 b}$. Among the three hydroxyl groups, two were considered to be located at C-1 (δ 3.75) and C-3 ($\delta 5.33$) by comparing the ${ }^{1}$ H NMR spectrum with that of $\mathbf{1}$. Detailed analysis of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$, and long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectra indicated that the third hydroxyl group should be located at C-24 and that the ester ($\delta 178.1$) and carboxylic acid (δ 178.6) groups were at C-4 and C-20, respectively (Figure 1). These and other long-range correl ations established the planar structure of quadrangularic acid G (2).

The stereochemistry of rings A-D in $\mathbf{2}$ was determined to be the same as $\mathbf{1}$, based on the coupling constants and the result of NOE experiments. The configuration at the chiral center C-24, on the other hand, was determined through the NMR study of MTPA esters of the dimethyl ester $\mathbf{2 a}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the (R)-MTPA ester 2c, $\mathrm{H}_{2}-26$ and $\mathrm{H}_{3}-27$ appeared shielded, whereas $\mathrm{H}_{2}-23$ and $\mathrm{H}_{2}-22$ were deshielded, in comparison to analogous data for (S)-MTPA ester 2d (Scheme 1). Thus, $\mathrm{H}_{2}-26$ and $\mathrm{H}_{3}-27$ in the (R)-MTPA ester 2c were more affected by the phenyl ring of the MTPA part; that is, the configuration at C-24 should be S. ${ }^{7,8}$ The configuration at $\mathrm{C}-20$ of $\mathbf{2}$ was assumed to be the same as that of $\mathbf{1}$ because both compounds were isolated from the same plant part.

24-Epiquadrangularic acid G (3), a colorless amorphous solid, showed the same molecular formula as $2\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{7}\right)$ in the HRFABMS. The ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 were similar to those of $\mathbf{2}$, except for a slight downfield shift of one of the olefinic protons ($\mathbf{3}, \delta 5.31 ; \mathbf{2}, \delta 5.20$) and small differences in the carbon chemical shifts from C-24 to C-27 (Table 1). Thus, $\mathbf{2}$ and $\mathbf{3}$ were considered to be epimers at C-24; that is, 3 has a 24R configuration. This was confirmed by the fact that their methyl esters $\mathbf{2 a}$ and $\mathbf{3 a}$ gave the same α, β-unsaturated ketone 4 a by MnO_{2} oxidation. ${ }^{9}$

Quadrangularic acid H (4) was also obtained as a colorless amorphous solid, and the HRFABMS data sug-
gested the molecular formula to be $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{7}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}$ were similar to those of $\mathbf{2}$ and $\mathbf{3}$, but they showed a new signal for a ketone-carbonyl at $\delta 201.2$ and the disappearance of the signal assignable to the hydroxymethylene (C-24) found in $\mathbf{2}$ and $\mathbf{3}$. In addition, correlations between the ketone carbon and the protons H_{2-} 26 and $\mathrm{H}_{3}-27$ were observed in the long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum, suggesting that 4 should have a ketone group at C-24 instead of a hydroxyl group as in $\mathbf{2}$ and $\mathbf{3}$. This was further confirmed by esterification of 4 with diazomethane to the α, β-unsaturated ketone 4a.

Quadrangularic acid I (5), a colorless amorphous solid, showed a quasimolecular ion at $\mathrm{m} / \mathrm{z} 541.3506$ in the HRFABMS, being consistent with the molecular formula $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{6}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 was similar to those of $\mathbf{2}$ and 3. Differences between $\mathbf{5}$ and $\mathbf{2}$ and $\mathbf{3}$ were apparent only in the signals due to the ring D side chain. In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 , the signals of the oxymethylene group appeared at $\delta_{\mathrm{H}} 4.09$ (dd, J $=11.0,3.0$ $\mathrm{Hz}), \delta_{\mathrm{H}} 3.85(\mathrm{dd}, \mathrm{J}=11.0,5.0 \mathrm{~Hz})$, and $\delta_{\mathrm{C}} 62.0$, instead of a signal for a carboxylic acid group at C-20 as in $\mathbf{2}$ and 3. These data and the long-range correlations between $\mathrm{H}_{2}-21$ and $\mathrm{C}-20$ in the FG-pulsed HMBC spectrum (Figure 1) indicated that there should be a hydroxymethylene group at C-20 in 5 . The stereochemistry in rings A-D of 5 was determined by NOE difference experiments and found to be the same as $\mathbf{1}$, while that of C-24 was concluded as S by comparing the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with those for 2 (24S) and 3 (24R) (Table 1 and Experimental Section).

Quadrangularic acidJ (6), a colorless amorphous solid, was isolated as an acid and gave a monomethyl ester 6a with diazomethane. The molecular formula of 6 was determined as $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{5}$ by HRFABMS, and its IR spectrum showed the presence of hydroxyl ($3400 \mathrm{~cm}^{-1}$) and carbonyl ($1700 \mathrm{~cm}^{-1}$) groups. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6}$ showed almost identical signals to those of $\mathbf{1}$, but the signals of a secondary methyl appeared at $\delta_{\mathrm{H}} 0.96$ (d, J $=$ 6.5 Hz) and $\delta_{\mathrm{C}} 18.6$ instead of a signal due to a carboxylic acid group in 1, suggesting that C-21 should be a methyl group. The quaternary carbon signal assignable to C-25 was shifted to $\delta 74.8$, indi cating the presence of a methoxyl group ($\delta_{\mathrm{H}} 3.20, \delta_{\mathrm{C}} 50.1$). These were further confirmed by the FG-pulsed HMBC spectrum (Figure 2). From these data and NOE difference experiments, the structure of quadrangularic acidJ was determined as 6.

Quadrangularic acid K (7) was isolated as a colorless amorphous solid, and its molecular formula was determined as $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{5}$ by HRFABMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Table 1 and Experimental Section) of 7 were similar to those of 6, and correlations observed in the long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum (Figure 2) indicated that 7 has a hydroxyl group instead of a methoxyl group at C-25 as in 6. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 7, the signals of two olefinic protons appeared as a broad singlet at $\delta 5.94$, suggesting a cis configuration of the double bond. The cis nature of the double bond was further supported by comparison of

Table 1. ${ }^{13} \mathrm{C}$ NMR Data (100 MHz) of Compounds $\mathbf{1} \mathbf{- 1 3}$ in Pyridine- d_{5}

position	1	2	3	4	5	6	7	8	9	10	11	12	13
1	72.1	72.1	72.1	72.3	72.2	72.5	72.4	72.6	75.5	72.5	72.5	72.5	72.5
2	38.6	38.5	38.5	38.5	38.6	38.8	38.6	38.8	38.8	38.8	38.8	38.8	37.7
3	70.4	70.4	70.4	70.6	70.4	70.7	70.5	70.7	70.7	70.7	70.7	70.5	70.7
4	56.0	56.0	56.0	55.5	56.0	55.7	55.5	55.7	55.7	55.7	55.7	55.4	55.7
5	37.9	37.8	37.8	37.5	37.9	37.7	37.6	37.7	37.7	37.7	37.7	36.7	38.8
6	23.2	23.1	23.2	23.1	23.4	23.4	23.3	23.4	23.4	23.4	23.4	34.0	23.4
7	26.0	27.5	27.5	27.2	27.7	28.3	28.1	28.4	28.3	28.4	28.4	69.5	28.2
8	47.8	47.8	47.9	47.8	48.3	48.1	48.0	48.2	48.2	48.2	48.2	54.9	48.1
9	20.8	20.8	20.8	20.7	20.9	20.8	20.7	20.8	20.8	20.8	20.8	20.9	20.8
10	30.3	30.2	30.3	30.3	30.1	30.3	29.8	30.3	30.3	30.3	30.3	30.7	30.3
11	25.7	26.0	26.0	25.7	26.2	26.2	26.0	26.2	26.2	26.2	26.2	26.7	26.2
12	30.6	30.6	30.6	30.5	32.5	33.2	33.0	33.3	33.3	33.3	33.3	33.3	33.2
13	45.7	45.6	45.7	45.5	45.5	45.5	45.4	45.5	45.5	45.5	45.5	46.0	45.5
14	48.9	48.9	48.9	48.9	49.1	49.2	48.9	49.1	49.1	49.1	49.1	49.2	49.1
15	35.4	34.0	33.9	35.2	35.9	35.9	35.7	35.9	35.9	36.3	36.3	37.5	35.8
16	27.3	25.7	25.7	25.6	25.8	25.7	25.7	25.8	25.9	25.9	25.9	28.8	25.9
17	49.2	49.2	49.0	49.4	47.0	52.2	52.1	52.9	52.8	52.6	52.6	52.0	52.5
18	18.1	18.1	18.3	18.0	18.7	18.4	18.3	18.4	18.4	18.4	18.4	17.7	18.3
19	29.6	29.6	29.8	29.6	29.7	29.7	29.6	29.8	29.8	29.8	29.8	27.8	29.7
20	49.5	49.6	49.6	48.5	43.6	36.6	36.7	36.3	36.3	36.4	36.4	36.4	36.0
21	177.8	178.6	178.5	178.5	62.0	18.6	18.4	18.6	18.8	18.7	18.7	18.7	18.1
22	37.8	29.5	29.2	27.6	26.4	39.6	39.3	34.1	34.5	32.7	32.7	35.4	32.1
23	127.5	35.4	35.4	35.6	32.4	128.3	124.4	28.9	29.4	35.9	35.9	31.6	32.0
24	137.5	75.6	74.8	201.2	76.2	137.5	141.3	79.0	79.8	75.6	76.1	156.7	176.5
25	81.1	149.4	149.6	144.3	149.5	74.8	69.6	72.7	72.7	149.6	149.6	34.1	
25	25.3	110.6	110.0	124.6	110.2	26.5	30.6	26.1	26.1	110.0	110.4	22.0	
27	24.9	17.5	18.1	17.5	17.9	26.0	30.0	25.9	26.0	18.2	17.7	21.9	
28	178.1	178.1	178.1	180.1	178.1	180.0	180.0	180.0	180.0	180.1	180.1	179.9	180.0
29	9.4	9.4	9.5	9.6	9.5	9.7	9.6	9.7	9.7	9.8	9.8	9.7	9.7
30	19.4	19.4	19.4	19.3	19.7	19.4	19.3	19.5	19.5	19.5	19.5	19.0	19.4
31												106.6	
MeO-25						50.1							
MeO-28	51.4	51.4	51.4		51.5								

Figure 2. Significant correlations observed in the long-range ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ COSY spectrum of compounds 6, 7, and 8. Compounds 7 and 8 also showed the same significant correlations in rings A-D as compound 6.
the chemical shifts of methyl ester 7a in $\mathrm{CDCl}_{3}(\mathrm{C}-23, \delta$ 125.5 ; C-24, $\delta 139.4$) with those of (23Z)-3 β-acetoxycycl oart-23-en-25-ol, a compound having the same side chain (C23, δ 125.6; C-24, δ 139.3) as 7. ${ }^{10}$

Quadrangularic acid L (8), a colorless amorphous solid with the molecular formula $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6}$, showed hydroxyl and carbonyl group absorption in the IR spectrum. The ${ }^{1} H$ NMR spectrum of 8 , analyzed with the aid of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, showed signals due to a cydl opropane methylene, three oxymethines, five tertiary methyls, and a secondary methyl. Based on a comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with those of $\mathbf{7 , 8}$ was considered to bea C-24 hydroxyl derivative, which was confirmed by the long-range ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ COSY spectrum (Figure 2). The orientation of the hydroxyl groups at C-1 and C-3 in 8 were concluded to be α and β, respectively, by comparison of the ${ }^{1} \mathrm{H}$ NMR data with those of $\mathbf{1 - 7}$. The stereochemistry of the rest of the molecule was determined by NOE experiments. For the determination of the absolute configuration at C-24, the (R)-MTPA ester $\mathbf{8 b}$ and the (S)-MTPA ester $\mathbf{8 c}$ were prepared from the methyl ester 8a. The $\Delta \delta^{\mathrm{RS}}\left(=\delta^{\mathrm{R}}-\delta^{\mathrm{S}}\right)$ values of $\mathrm{H}_{2}-23, \mathrm{H}_{3}-26$, and $\mathrm{H}_{3}-27$, however, were all negative, and thus the advanced Mosher's method ${ }^{7}$ could not be applied. This could result from their unusual conformation due to the presence of the C-25 hydroxyl group. Thus, the MTPA esters $\mathbf{8 b}$ and $\mathbf{8 c}$ were dehydrated with POCl_{3}-pyridine ${ }^{11}$ into the respective olefins, $\mathbf{1 0 b}$ and $\mathbf{1 0 c}$ (Scheme 2). In the case of 10b and 10c, H_{2}-26 and $\mathrm{H}_{3^{-}}$

Scheme 2. $\Delta \delta^{\mathrm{RS}}\left(=\delta^{\mathrm{R}}-\delta^{\mathrm{S}}\right.$) Values Obtained from the MTPA Esters of Methyl Quadrangularate $\mathrm{L}(\mathbf{8 A})$ and Methyl Quadrangularate M (10A)

Figure 3. (a) Significant correlations observed in the FG-pulsed HMBC spectrum of compound 12, and (b) NOEs observed in the NOE difference experiments of compound $\mathbf{1 2}$.

27 of (R)-MTPA ester 10b resonated downfield as compared to (S)-MTPA ester 10c, while $\mathrm{H}_{2}-23$ of 10b resonated upfield when compared to 10c. This indicated that $\mathrm{H}_{2}-23$ in the (R)-MTPA ester 10b was more affected by the phenyl ring of the MTPA part; that is, C-24 should have an R configuration. ${ }^{7,8}$ Thestructure of quadrangularic acid L was thus determined as 8.
24-E piquadrangularic acid L (9), a colorless amorphous solid, had the same molecular formula $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6}$ as 8. The IR, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR spectra of 9 were almost the same as those of 8, but a slight difference was found in the chemical shifts of $\mathrm{H}-24(\mathbf{9}, \delta 3.71 ; \mathbf{8}, \delta 3.76)$ and $\mathrm{C}-24$ (9, $\delta 79.8 ; 8, \delta 79.0$). Analysis of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC , and HMBC spectra indicated that $\mathbf{9}$ had the same planar structure as 8, while the NOE spectra revealed the presence of the same stereochemistry on rings $A-D$ as $\mathbf{8}$. Thus, 9 was concluded to be the 24 S epimer of 8.

Quadrangularic acid M (10) and 24-epiquadrangularic acid M (11) were obtained as an epimeric mixture (10:11 $=4: 3$ from the ${ }^{1} \mathrm{H}$ NMR spectrum), and their molecular formulas were determined as $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{5}$ based on FABMS. Analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the mixture through the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$, and long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectra enabled the assignment of the signals to each epimer. The assigned data of $\mathbf{1 0}$ and $\mathbf{1 1}$ differed only in the chemical shift of one of the olefinic protons (10, $\delta 5.27$ 11, $\delta 5.22$) in the ${ }^{1} \mathrm{H}$ NMR spectrum, while in the ${ }^{13} \mathrm{C}$ NMR spectrum, they clearly differed at three signals, C-24, C-26, and C-27 (Table 1). Thus, they were considered to be epimers at C-24, and, by comparing their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with those of $\mathbf{2}$ and $\mathbf{3 , 1 0}$ and $\mathbf{1 1}$ were assigned with the 24 R and 24 S configuration, respectively. This was confirmed by the fact that methylation with diazomethane, followed by esterification with (R)-MTPA chloride, gave a mixture of 10b and its 24S epimer (10c) (4:3).
7β-Hydroxy-23-deoxojessic acid (12) was isolated as colorless crystals having a melting point of $219{ }^{\circ} \mathrm{C}$, and its molecular formula was determined as $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{5}$ by HRFABMS. TheIR spectrum of $\mathbf{1 2}$ showed a broad absorption band at $3400 \mathrm{~cm}^{-1}$ and a sharp absorption band at $1700 \mathrm{~cm}^{-1}$, suggesting the presence of hydroxyl and carbonyl groups, respectively. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 12 were similar to those of 23-deoxojessic acid ${ }^{3}$ (15) except that $\mathbf{1 2}$ had one more hydroxyl group. The presence of three free hydroxyl groups was confirmed by acetylation of the methyl ester 12a to a triacetate 12b. The position of the additional hydroxyl group was determined to be at C-7 by
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY analysis and was further confirmed by the long-range correlations observed in the F G-pulsed HMBC spectrum (Figure 3a).

$1 \quad \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{COOH}, \mathrm{R}_{3}=\mathrm{OH}$
1a $\quad \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{COOMe}, \mathrm{R}_{3}=\mathrm{OH}$
$6 \quad R_{1}=H, R_{2}=R_{3}=M e$
6a $\quad R_{1}=R_{2}=R_{3}=M e$
$14 \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{CHO}, \mathrm{R}_{3}=\mathrm{OH}$

$2 \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{COOH}, \mathrm{R}_{3}=\mathrm{H}$
2a $\quad R_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{COOMe}, \mathrm{R}_{3}=\mathrm{H}$
2b $\quad \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{COOMe}, \mathrm{R}_{3}=\mathrm{Ac}$
2c $\quad \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=$ COOMe, $\mathrm{R}_{3}=(R)$-MTPA
2d $\quad R_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{COOMe}, \mathrm{R}_{3}=(S)$-MTPA
$5 \quad \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$
$11 R_{1}=H, R_{2}=M e, R_{3}=H$

The configurations of the hydroxyl groups at $\mathrm{C}-1$ and $\mathrm{C}-3$ were concluded to be α and β, respectively, on the basis of coupling constants of $\mathrm{H}-1(\mathrm{br} \mathrm{s}$) and $\mathrm{H}-3$ (dd, $\mathrm{J}=12.0,4.5$ $\mathrm{Hz})$. The diaxial coupling of $\mathrm{H}-7$ with $\mathrm{H}-6_{\mathrm{ax}}(11.8 \mathrm{~Hz})$ and $\mathrm{H}-8_{\mathrm{ax}}(8.5 \mathrm{~Hz})$ suggested the β configuration of $\mathrm{OH}-7$. These were further confirmed by NOEs observed in NOE differ-

Scheme 3. Possible Biogenetic Pathway of 1-13 from the Hypothetical Precursor $\mathbf{1 6}$ or Mollic Acid (17)

ence experiments (Figure 3b). The cyd opropane methyl ene protons of 7β-hydroxycycloartane-type triterpenes have been reported to appear in the usual range; that is, $\delta 0.35-$ 0.39 and $\delta 0.66-0.70 .^{12,13}$ It should be noted here that, contrary to previous reports, these protons in 12 were deshielded to resonate at $\delta 0.55$ and 1.11.
Norquadrangularic acid A (13) was obtained as a colorless amorphous solid and gave a dimethyl ester 13a by methylation with diazomethane. It showed a quasimolecuIar ion peak at m/z 485.2883 in HRFABMS corresponding to the molecular formula $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{6}$. The IR spectrum of $\mathbf{1 3}$ suggested the presence of hydroxyl ($3400 \mathrm{~cm}^{-1}$) and carbonyl group ($1700 \mathrm{~cm}^{-1}$) absorptions. The ${ }^{1} \mathrm{H}$ NMR spectrum of 13 displayed the signals of two cyclopropane methylene protons at $\delta 0.82$ and 0.54 (both d, $\mathrm{J}=4.5 \mathrm{~Hz}$) along with three tertiary methyls, one secondary methyl, and two oxymethine protons. These were identical to those of the other cycloartane-type triterpenes isolated from C. quadrangulare The ${ }^{13} \mathrm{C}$ NMR spectrum of 13, however, displayed only 27 carbon signals, and thus $\mathbf{1 3}$ was assigned as a trinorcycloartane-type triterpene. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}$ showed signals of two carbonyl carbons (δ 176.5 and 180.0) due to two free carboxylic acid groups On the basis of the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum and the long-

Figure 4. Significant correlations observed in the FG-pulsed HMBC spectrum of compound $\mathbf{1 3}$.
range correlations observed in the FG-pulsed HMBC spectrum (Figure 4), the positions of the carboxylic acid groups were determined as C-23 and C-4. The positions of the two hydroxyl groups were determined as C-1 α and C-3 β by comparing the chemical shifts and the coupling constants of $\mathrm{H}-1(\delta 3.91, \mathrm{br} \mathrm{s})$ and $\mathrm{H}-3$ ($\delta 5.57$, dd, J $=12.0$, 4.5 Hz) with those of $\mathbf{1 - 1 2}$ and were consistent with the results of the NOE difference experiments. Accordingly, the
structure of norquadrangularic acid A was established as 13.

The cycl oartane-type triterpenes (1-13) are all new and are characterized by the presence of $1 \alpha, 3 \beta$-dihydroxy and 28-carboxyl groups, which seems to be typical for Combre tum species among this class of compounds. ${ }^{14-18}$ Previous literature reports reveal the presence of a carboxylic acid group either at C-4 ${ }^{14-18}$ or at C-20 in cycloartane-type triterpenes. ${ }^{19-21}$ Compounds 1-4, however, have two carboxylic acid groups at both C-4 and C-20. Furthermore, norquadrangularic acid $\mathrm{A}(\mathbf{1 3})$ is a trinorcycloartane-type triterpene. Previously, this type of triterpene was reported from Wrightia tinctoria ${ }^{22}$ and Euphorbia broteri, ${ }^{23}$ and the commercial drug "Cimicifuga Rhizoma", ${ }^{24}$ but there is no previous report of their presence in Combretum species. In our previous work, we observed that few of the cycloar-tane-type triterpenes isolated from C. quadrangulare possessed potent cytotoxicity toward the liver-metastatic murine colon 26-L5 carcinoma cells. ${ }^{3,28}$ The triterpenes 1-13, however, showed only very weak cytotoxicity (ED_{50} : 5, 29.4; 6, 86.1; 7, 82.6; 12, 37.3; mixture of 10 and 11, $88.4 \mu \mathrm{~g} / \mathrm{mL}$; others > $100 \mu \mathrm{~g} / \mathrm{mL}$).

Most of the cycloartane-type triterpenes isolated from C. quadrangulare differ in the side chain attached to ring D. These compounds might be biosynthesized via photooxygenation of olefinic precursors such as $\mathbf{1 6}$ or mollic acid ${ }^{14}$ (17) (Scheme 3). It is well-known that molecular oxygen reacts with olefins to form allylic hydroperoxides. ${ }^{25-27}$ When the methyl proton of olefin $\mathbf{1 6}$ or $\mathbf{1 7}$ takes part in the reaction, a hydroperoxy group will be generated at C-24, which, on reduction, gives 2 and $\mathbf{3}$ (by 16) or $\mathbf{1 0}$ and 11 (by 17). If a methylene proton is involved, a hydroperoxide is generated at $\mathrm{C}-25$. Then, $\mathbf{1 4}$ will be formed from 16, which on oxidation gives 1 or on reduction gives methyl quadrangularate B (18). ${ }^{2}$ By photooxygenation dioxetane may also be formed ${ }^{25}$ and would lead to diols 8 and 9 through a reduction of the $\mathrm{O}-\mathrm{O}$ bond or to trinorcycloartane $\mathbf{1 3}$ through a cleavage of $\mathrm{O}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bonds.

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanaco micromelting point apparatus and are uncorrected. Optical rotations were recorded on a J ASCO DIP-140 digital polarometer. IR spectra were measured with a Shimadzu IR-408 spectrophotometer in KBr disks. NMR spectra weretaken on a J EOL GX-400 spectrometer or a J EOL J NM-LA400WB spectrometer with tetramethylsilane (TMS) as the internal standard, and chemical shifts are expressed in δ values. HRFABMS measurements were carried out on a JEOL JMS-700T spectrometer, and glycerol was used as a matrix. Column chromatography was performed with normalphase (Fuji Silysia, BW-820 MH) or reversed-phase Si gel (Cosmosil 75C ${ }_{18}$-OPN, Nacalai Tesque Inc., Kyoto, J apan). Analytical and preparative TLC were carried out on precoated Merck Kieselgel $60 \mathrm{~F}_{254}$ plates (0.25 or 0.50 mm thickness).

Plant Material. Leaves of Combretum quadrangulare Kurz were purchased at a local market at Ho Chi Minh City, Vietnam, in 1995. A voucher sample (TMPW 18999) is preserved in the Museum for Materia Medica, Toyama Medical and Pharmaceutical University, Toyama, J apan, as a reference.

Extraction and Isolation. Air-dried leaves (2.65 kg) were extracted with $\mathrm{MeOH}\left(16 \mathrm{~L}, 3 \mathrm{~h} \times 3\right.$) at $80^{\circ} \mathrm{C}$. The filtrate was evaporated under reduced pressure to yield a dark green MeOH extract (610 g). A part of the MeOH extract (400 g) was chromatographed over Si gel with a $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ gradient system to give 11 fractions (fraction 1, $2 \% \mathrm{MeOH}-$ CHCl_{3} eluate, 6.1 g ; fraction $2,2 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ eluate, 11.3 g; fraction $3,5 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ el uate, 20.4 g ; fraction $4,5 \%$
$\mathrm{MeOH}-\mathrm{CHCl}_{3}$ eluate, 15.0 g ; fraction $5,5 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ eluate, 39.4 g ; fraction $6,5 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ eluate, 23.2 g ; fraction $7,10 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ el uate, 10.2 g ; fraction $8,10 \%$ $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ eluate, 12.9 g ; fraction $9,20 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ eluate, 23.2 g ; fraction $10,30 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ eluate, 45.7 g , and fraction $11,50 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ eluate, 84.5 g).

Fractions 7 and 8 were combined (23.0 g) and chromatographed on a Cosmosil $75 \mathrm{C}_{18}$ - OPN with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}-\mathrm{CH}_{3} \mathrm{CN}$ (1:1:1) to give 12 subfractions. Further Si gel column chromatography and preparative TLC of subfraction 3 yielded quadrangularic acid F (1, 9.1 mg). Fraction 9 (20.0 g) was also applied on a Cosmosil $75 \mathrm{C}_{18}-\mathrm{OPN}$ column with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}-$ $\mathrm{CH}_{3} \mathrm{CN}(1: 1: 1)$ and eight subfractions were collected. F urther Si gel column chromatography and preparative TLC of the subfractions $2-7$ yielded the following compounds: fraction 2 , norquadrangularic acid $\mathrm{A}(\mathbf{1 3}, 20.6 \mathrm{mg})$, quadrangularic acid G (2, 120.2 mg), quadrangularic acid H (4, 15.5 mg), 24epiquadrangularic acid L (9, 32.0 mg); fraction 3, 24-epiquadrangularic acid G ($3,74.3 \mathrm{mg}$), methyl quadrangularate I (5, 24.0 mg), quadrangularic acid $\mathrm{L}(8,32.0 \mathrm{mg})$; fraction 5 , a mixture of quadrangularic acid M (10) and 24-epiquadranguIaric acid M (11) (63.3 mg); fraction 7, quadrangularic acid J ($6,73.0 \mathrm{mg}$), quadrangularic acid $\mathrm{K}(7,15.5 \mathrm{mg}$), and 7β -hydroxy-23-deoxojessic acid (12, 62.1 mg).

Quadrangularic acid F (1): col orless amorphous solid; $[\alpha]^{25_{\mathrm{D}}}+15.7^{\circ}$ (c 0.03, MeOH); IR $v_{\text {max }}(\mathrm{KBr}) 3400,1720,1440$, $1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine-d ${ }_{5}$) $\delta 6.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}$, $\mathrm{H}-24), 6.07(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=16.0,6.0 \mathrm{~Hz}, \mathrm{H}-23), 5.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3$), 3.77 (1 H, br s, H-1), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}-28$), 3.23 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.40 ($1 \mathrm{H}, \mathrm{ddd}$, J = 13.0, $4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2)$, 2.19 (1 H , ddd, J = 13.0, $12.0,3.5 \mathrm{~Hz}, \mathrm{H}-2$), $1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right)$, $1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 0.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5$ $\mathrm{Hz}, \mathrm{H}-19), 0.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$; HRFABMS m/z 571.3239 (calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 571.3247$).

Quadrangularic acid G (2): colorless amorphous solid; $[\alpha]^{25_{\mathrm{D}}}+73.4^{\circ}(\mathrm{c} 0.09, \mathrm{MeOH})$; IR $v_{\text {max }}(\mathrm{KBr}) 3450,1700,1260$, $1040 \mathrm{~cm}^{-1}$; 1 H NMR (pyridine d_{5}) $\delta 5.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.0$ Hz, H-3), 5.20 (1 H, br s, H-26), 4.93 (1H, br s, H-26), 4.46 (1 H , t , J $=5.0 \mathrm{~Hz}, \mathrm{H}-24), 3.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}-$ 28), 3.21 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{H}-5$), $2.66(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$, $\mathrm{H}-11), 2.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-20), 2.37(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.0,4.0 \mathrm{~Hz}, \mathrm{H}-2)$, 2.17 (1H, ddd, J = 13.0, 12.0, $3.5 \mathrm{~Hz}, \mathrm{H}-2$), $1.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 27), 1.63 ($1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-8$), 1.58 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29$), 1.35 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 0.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$, H-19), 0.41 (1H, d, J $=4.5 \mathrm{~Hz}, \mathrm{H}-19$); HRFABMS m/z 555.3272 (calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 555.3298$).

24-Epiquadrangularic acid G (3): col orless amorphous solid; $[\alpha]^{25} \mathrm{D}+103.5^{\circ}$ ($\mathrm{c} 0.05, \mathrm{MeOH}$); IR $v_{\text {max }}$ (KBr) 3450, 1700 , 1440, $1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine-d 5) $\delta 5.33$ (1 H , dd, J = $12.0,4.0 \mathrm{~Hz}, \mathrm{H}-3), 5.31$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26$), 4.95 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26$), $4.50(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}-24), 3.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 3.64(3 \mathrm{H}$, $\mathrm{s}, \mathrm{MeO}-28), 3.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{H}-5)$, $2.72(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-17$), 2.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), 2.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-20$), 2.38 ($1 \mathrm{H}, \mathrm{dt}$, J $=13.0,4.0 \mathrm{~Hz}, \mathrm{H}-2), 2.16(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.0,12.0,3.5 \mathrm{~Hz}$, $\mathrm{H}-2), 1.89$ (3H, s, H ${ }_{3}-27$), 1.58 (3H, s, H ${ }_{3}-29$), 1.35 (3H, s, H ${ }_{3}$ 18), 1.03 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), 0.75 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19$), 0.41 (1H, d, J = $4.5 \mathrm{~Hz}, \mathrm{H}-19$); HRFABMS m/z 555.3272 (calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 555.3298\right)$.
Quadrangularic acid H (4): colorless amorphous solid; $[\alpha]^{25} \mathrm{D}+14.3^{\circ}$ (c 0.03, MeOH); IR $v_{\text {max }}(\mathrm{KBr}) 3450,1710,1450$, $1040 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine-d ${ }_{5}$) $\delta 5.97$ (1 H , br s, H-26), 5.64 (1 H , br s, H-26), 5.52 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{H}-3$), 3.79 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1$), 3.37 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.98 (2 H , $\mathrm{m}, \mathrm{H}_{2}-23$), 2.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11, \mathrm{H}-20$), 2.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-17$), 2.24 (1H, ddd, J = 12.5, 12.0, $3.0 \mathrm{~Hz}, \mathrm{H}-2$), $1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 27), $1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ 30), $0.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$, H-19); HRFABMS m/z 539.2980 (calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+$ $\left.\mathrm{Na}]^{+}, 539.2984\right)$.

Methyl quadrangularate I (5): col orless amorphous solid; $[\alpha]^{25}{ }_{\mathrm{D}}+137.0^{\circ}$ (c 0.02, MeOH); IR $v_{\max }(\mathrm{KBr}) 3400,1710,1450$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (pyridine-d ${ }^{2}$) $\delta 5.37$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}$, H-3), 5.23 (1 H, br s, H-26), 4.95 (1 H , br s, H-26), 4.42 ($1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}-24), 4.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,3.0 \mathrm{~Hz}, \mathrm{H}-21), 3.85$
($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,5.0 \mathrm{~Hz}, \mathrm{H}-21$), 3.84 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1$), 3.65 (3H, s, MeO-28), 3.24 (1H, dd, J $=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5), 2.75$ (1 H, ddd, $\mathrm{J}=13.0,8.0,4.0, \mathrm{H}-11$), 2.42 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.0$, $4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2), 2.21$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-17$), 1.94 (3H, s, H 3 -27), 1.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29$), $1.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right)$, $0.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$; HRFABMS m/z 541.3502 (calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 541.3506).

Quadrangularic acid J (6): colorless amorphous solid; $[\alpha]^{25}{ }_{\mathrm{D}}+8.4^{\circ}$ (c $0.02, \mathrm{MeOH}$); IR $v_{\text {max }}(\mathrm{KBr}) 3400,1710,1450$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (pyridine d_{5}) $\delta 5.65$ (1 H , ddd, J $=15.5,8.5,6.0$ Hz, H-23), 5.54 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-24$), 3.90 (1 H, br s, H-1), 3.40 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5$), 3.20 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}-25$), 2.74 $(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.0,9.0,8.0 \mathrm{~Hz}, \mathrm{H}-11), 2.48(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.0$, $4.0 \mathrm{~Hz}, \mathrm{H}-2), 2.28(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-22), 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.32$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26, \mathrm{H}_{3}-27$), 1.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18$), 0.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), 0.96 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21$), $0.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$, $0.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$; HRFABMS m/z 525.3524 (calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 525.3556$).

Quadrangularic acid K (7): colorless amorphous solid; $[\alpha]^{25} \mathrm{D}+133.7^{\circ}$ (c 0.03, MeOH); IR $v_{\text {max }}(\mathrm{KBr}) 3450,1700,1460$, $1380 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine-d ${ }_{5}$) $\delta 5.94$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-23, \mathrm{H}-24$), $5.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 3.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 3.41$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.74 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.0,9.0$, $8.0 \mathrm{~Hz}, \mathrm{H}-11$), 2.52 (1 H, ddd, J = 13.0, $4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2$), 2.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-23$), 1.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29$), $1.55\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26, \mathrm{H}_{3}-\right.$ 27), 1.04 (3H, s, $\left.\mathrm{H}_{3}-18\right), 0.98$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), $0.95(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21$), $0.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=4.5 \mathrm{~Hz}, \mathrm{H}-19$); HRFABMS m/z 511.3392 (calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{5}-$ $\left.\mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 511.3400\right)$.

Quadrangularic acid L (8): colorless amorphous solid; $[\alpha]^{25} \mathrm{D}+100.4^{\circ}$ (c 0.03, MeOH); IR $v_{\max }(\mathrm{KBr}) 3450,1700,1370$, $1040 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR (pyridine-d 5) $\delta 5.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5$ $\mathrm{Hz}, \mathrm{H}-3), 3.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 3.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,2.5 \mathrm{~Hz}$, $\mathrm{H}-24), 3.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5), 2.75(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ 13.0, 9.0, $8.0 \mathrm{~Hz}, \mathrm{H}-11$), 2.50 ($1 \mathrm{H}, \mathrm{ddd}$, J $=12.5,4.5,4.0 \mathrm{~Hz}$, $\mathrm{H}-2), 2.29(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.5,12.0,2.0 \mathrm{~Hz}, \mathrm{H}-2), 1.73(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-29\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 1.06(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-18\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right)$, $0.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$; HRFABMS m/z 529.3476 (calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 529.3495).

24-Epiquadrangularic acid L (9): colorless amorphous solid; $[\alpha]^{25} \mathrm{D}+76.2^{\circ}$ (c 0.08, MeOH); IR $v_{\text {max }}$ (KBr) 3450, 1700, 1470, 1380, $1050 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine-d 5) $\delta 5.57$ ($1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 3.92(1 \mathrm{H}$, br s, H-1), $3.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $10.0,2.0 \mathrm{~Hz}, \mathrm{H}-24), 3.43$ (1H, dd, J = 12.0, $4.5 \mathrm{~Hz}, \mathrm{H}-5), 2.75$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.0,9.0,8.0 \mathrm{~Hz}, \mathrm{H}-11$), $2.50(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.5$, $4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2), 2.30(1 \mathrm{H}$, ddd, J $=12.5,12.0,2.0 \mathrm{~Hz}, \mathrm{H}-2$), 1.74 (3H, s, H $\left.\mathrm{H}_{3}-29\right), 1.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 1.52$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27$), $1.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 0.98(3 \mathrm{H}$, s, $\mathrm{H}_{3}-30$), $0.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5$ $\mathrm{Hz}, \mathrm{H}-19$); HRFABMS m/z 529.3512 (calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Na}$ [M $+\mathrm{Na}]^{+}$, 529.3505).

Quadrangularic acid M(10): ${ }^{1} \mathrm{H}$ NMR (pyridine-d d_{5}) $\delta 5.57$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3$), $5.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26), 4.97$ (1 H, br s, H-26), $4.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-24), 3.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-1), 3.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5), 2.76(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $13.0,9.0,8.0 \mathrm{~Hz}, \mathrm{H}-11$), $2.50(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.5,4.5,4.0 \mathrm{~Hz}$, $\mathrm{H}-2), 2.30(1 \mathrm{H}$, ddd, J $=12.5,12.0,2.0 \mathrm{~Hz}, \mathrm{H}-2), 1.92(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-27\right), 1.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 0.99(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-30\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 0.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5$ $\mathrm{Hz}, \mathrm{H}-19), 0.55$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19$).

24-Epiquadrangularic acid M (11): ${ }^{1} \mathrm{H}$ NMR (pyridine$\left.d_{5}\right) \delta 5.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 5.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26)$, $4.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26), 4.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-24), 3.92(1 \mathrm{H}$, br s, H-1), $3.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5), 2.76(1 \mathrm{H}, \mathrm{ddd}$, $\mathrm{J}=13.0,9.0,8.0 \mathrm{~Hz}, \mathrm{H}-11), 2.50(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.5,4.5,4.0$ $\mathrm{Hz}, \mathrm{H}-2), 2.30(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.5,12.0,2.0 \mathrm{~Hz}, \mathrm{H}-2), 1.93$ (3 H , $\mathrm{s}, \mathrm{H}_{3}-27$), $1.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 0.99(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-30\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 0.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5$ $\mathrm{Hz}, \mathrm{H}-19), 0.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$.

7 β-Hydroxy-23-deoxojessic acid (12): col orless crystals; $\mathrm{mp} 219^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+80.9^{\circ}$ (c 0.07, MeOH); IR $v_{\text {max }}(\mathrm{KBr}) 3400$, 1700, 1470, $1380 \mathrm{~cm}^{-1}{ }^{1}{ }^{1}$ H NMR (pyridined ${ }_{5}$) $\delta 5.60$ (1 H , dd,
$\mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 4.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-31), 4.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-31$), 4.12 (1 H, ddd, J $=11.0,8.5,4.0 \mathrm{~Hz}, \mathrm{H}-7$), 4.00 ($1 \mathrm{H}, \mathrm{br}$ s, H-1), $3.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{H}-5), 2.63(1 \mathrm{H}$, ddd, J $=13.0,8.0,4.0 \mathrm{~Hz}, \mathrm{H}-11$), 2.54 (1H, ddd, J = 13.0, 4.5, 4.0 $\mathrm{Hz}, \mathrm{H}-2), 2.34(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.0,12.0,3.5 \mathrm{~Hz}, \mathrm{H}-2), 2.10(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-8), 1.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right)$, $1.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 1.06(3 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}_{3}-26\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}_{3}-27\right), 0.98$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}_{3}-21$), $0.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$; HRFABMS m/z 525.3593 (calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 525.3556).

Norquadrangularic acid A (13): colorless amorphous solid; $[\alpha]^{25} \mathrm{D}+200.6^{\circ}$ (c 0.01, MeOH); IR $v_{\text {max }}$ (KBr) 3400, 1710, 1550, $1470 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine-d $)^{2} \delta 5.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 3.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 3.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5$, $4.5 \mathrm{~Hz}, \mathrm{H}-5), 2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 2.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 2.52(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-23$), $2.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.30(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.5,11.0,2.0$ $\mathrm{Hz}, \mathrm{H}-2), 2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 1.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.74(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}_{3}-29$), 1.03 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18$), 0.98 (3H, s, $\mathrm{H}_{3}-30$), 0.95 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=5.0 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 0.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.54(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19$); HRFABMS m/z 485.2883 (calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 485.2879\right)$.

Oxidation of Methyl Quadrangularate B (14) to Quadrangularic acid F (1). To a stirred solution of $\mathbf{1 4}(2 \mathrm{mg}$, $3.75 \mu \mathrm{~mol})$ in a mixture of $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$, aqueous $\mathrm{NaH}_{2^{-}}$ $\mathrm{PO}_{4}(0.1 \mathrm{mg} / \mathrm{mL}, 0.5 \mathrm{~mL}), 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(40 \mu \mathrm{~L})$, and an aqueous solution of $\mathrm{NaClO}_{2}(0.4 \mathrm{mg} / \mathrm{mL}, 125 \mu \mathrm{~L})$ were added dropwise at $10^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at $10^{\circ} \mathrm{C}$. After $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (1 mg) was added, the mixture was subjected to preparative TLC with $20 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ to yield $\mathbf{1}(1.2 \mathrm{mg}$, 58.4\%).

Oxidation of Dimethyl Quadrangularate G (2a) and Dimethyl 24-E piquadrangularate (3a) to Dimethyl Quadrangularate \mathbf{H} (4a). To a stirred solution of $\mathbf{2 a}(10 \mathrm{mg})$ in $\mathrm{CHCl}_{3}(2 \mathrm{~mL}), \mathrm{MnO}_{2}(200 \mathrm{mg})$ was added, and the mixture was stirred for 24 h at room temperature. The precipitate was filtered off, and the filtrate was purified by preparative TLC with $\mathrm{MeOH}-\mathrm{CHCl}_{3}(1: 9)$ to give $4 \mathbf{a}(2.7 \mathrm{mg}, 26.8 \%)$. By the same procedure, $3 \mathbf{a}(2.0 \mathrm{mg})$ also gave $4 \mathbf{a}(0.4 \mathrm{mg}, 20.0 \%)$.

Preparation of (R)- and (S)-MTPA Esters of Dimethyl Quadrangularate G (2a) and Methyl Quadrangularate \mathbf{L} (8a). To a solution of $\mathbf{2 a}(10 \mathrm{mg})$ in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ and pyridine (0.5 mL), (R)-MTPA-CI ($100 \mu \mathrm{~L}$) was added, and the mixture was stirred overnight at room temperature. The reaction mixture was then directly purified by preparativeTLC with $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:19) to give (R)-MTPA ester $\mathbf{2 c}$ (15.4 mg ; 70.4\%). By the same procedure, the (S)-MTPA ester 2d (14.4 $\mathrm{mg}, 65.9 \%$) and the (R)- and (S)-MTPA esters of 8a, 8b (3.7 $\mathrm{mg}, 47.8 \%$), and 8 c ($3.5 \mathrm{mg}, 38.9 \%$) were prepared.
(R)-MTPA ester of dimethyl quadrangularate G (2c): col orless amorphous solid; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.59-7.30$ (15 H , $\mathrm{m}, \mathrm{Ph}-\mathrm{H} \times 3$), $5.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{H}-3), 5.27(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{H}-24), 5.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26), 4.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26)$, 4.78 (1 H , br s, H-1), 3.58 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}-21$), 3.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}-$ 28), 3.60, 3.47, 3.40 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 3$), 2.45 (1 H , ddd, J = $13.0,4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2), 2.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.0 \mathrm{~Hz}, \mathrm{H}-5)$, 2.19 ($1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.0,3.0 \mathrm{~Hz}, \mathrm{H}-22$), $2.00(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=10.0$ $\mathrm{Hz}, \mathrm{H}-22$), 1.90 (1 H, ddd, J $=13.0,12.5,3.5 \mathrm{~Hz}, \mathrm{H}-2$), 1.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23$), 1.50 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27$), 1.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23$), 1.08 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 0.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 0.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$, $\mathrm{H}-19), 0.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right)$; HRFABMS m/z 1217.4624 (calcd for $\mathrm{C}_{62} \mathrm{H}_{71} \mathrm{~F}_{9} \mathrm{O}_{13} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 1217.4649).
(S)-MTPA ester of dimethyl quadrangularate G (2d): col orless amorphous solid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.59-7.30$ (15 H , $\mathrm{m}, \mathrm{Ph}-\mathrm{H} \times 3$), $5.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{H}-3), 5.30(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{H}-24), 4.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26), 4.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26)$, 4.77 (1 H , br s, H-1), 3.57 (3H, s, MeO-21), 3.56 (3H, s, MeO28), 3.50, 3.45, 3.38 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 3$), $2.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 12.0, $4.0 \mathrm{~Hz}, \mathrm{H}-5$), 2.35 (1 H , ddd, J = 13.0, $4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2$), $2.15(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.0,3.0 \mathrm{~Hz}, \mathrm{H}-22), 2.00(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=10.0$ Hz, H-22), 1.77 (1H, ddd, J = 13.0, $12.5,3.5 \mathrm{~Hz}, \mathrm{H}-2$), 1.60 (3H, s, H ${ }_{3}-27$), 1.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23$), 1.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23$), 1.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29$), $0.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 0.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$,
$\mathrm{H}-19), 0.72$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), 0.52 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19$) HRFABMS m/z 1217.4657 (calcd for $\mathrm{C}_{62} \mathrm{H}_{71} \mathrm{~F}_{9} \mathrm{O}_{13} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 1217.4649).
(R)-MTPA ester of methyl quadrangularate L (8b): col orless amorphous solid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.62-7.31$ (15 H , $\mathrm{m}, \mathrm{Ph}-\mathrm{H} \times 3), 5.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 4.89(1 \mathrm{H}$, dd, J = 9.0, 2.5 Hz, H-24), $4.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 3.50(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeO}-28$), 3.62, 3.50, 3.41 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 3$), 2.46 (1 H , ddd, $\mathrm{J}=12.5,4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2), 2.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}$, H-5), 1.92 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,12.0,2.0 \mathrm{~Hz}, \mathrm{H}-2$), 1.50 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2}-23\right), 1.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 1.10(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-27\right), 0.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 0.76$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19$), 0.68 $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 0.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.53$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$); HRFABMS m/z 1191.4825 (cal cd for $\mathrm{C}_{61} \mathrm{H}_{73} \mathrm{~F}_{9} \mathrm{O}_{12}$ $\left.\mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 1191.4856\right)$.
(S)-MTPA ester of methyl quadrangularate L (8 c): col orless amorphous solid; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.57-7.31$ (15 H , $\mathrm{m}, \mathrm{Ph}-\mathrm{H} \times 3)$, $5.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 4.91(1 \mathrm{H}$, dd, J = 9.0, $2.5 \mathrm{~Hz}, \mathrm{H}-24$), 4.80 (1 H , br s, H-1), 3.56 ($3 \mathrm{H}, \mathrm{s}$, MeO-28), 3.53, 3.50, 3.39 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 3$), 2.42 (1 H , dd, $\mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5), 2.36(1 \mathrm{H}$, ddd, J $=12.5,4.5,4.0 \mathrm{~Hz}$, $\mathrm{H}-2), 1.95(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.0,3.5 \mathrm{~Hz}, \mathrm{H}-11), 1.80(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ 12.5, 12.0, $3.5 \mathrm{~Hz}, \mathrm{H}-2), 1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-23\right), 1.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 29), $1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 18), 0.77 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19$), $0.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\mathrm{H}_{3}-21$), $0.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 0.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$; HRFABMS m/z 1191.4840 (calcd for $\mathrm{C}_{61} \mathrm{H}_{73} \mathrm{~F}_{9} \mathrm{O}_{12} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 1191.4856).

Dehydration of MTPA Esters $\mathbf{8 b}$ and 8 c with POCl_{3}. To a solution of $\mathbf{8 b}(1.0 \mathrm{mg})$ in pyridine $(100 \mu \mathrm{~L}), \mathrm{POCl}_{3}(20$ $\mu \mathrm{L}$) was added, and the mixture was stirred overnight at room temperature. After the reaction mixture was poured in icecold water (5 mL), the mixture was extracted with CHCl_{3} (5 $\mathrm{mL} \times 3$). The CHCl_{3} extract was washed with water, dried over anhydrous MgSO_{4}, and evaporated under reduced pressure to yield $\mathbf{1 0 b}$ ($0.4 \mathrm{mg}, 40.9 \%$). By a similar procedure 10c $(2.0 \mathrm{mg}, 84.0 \%)$ was prepared from $8 \mathrm{c}(2.4 \mathrm{mg})$.
(R)-MTPA ester of methyl quadrangularate M(10b): col orless amorphous sol id; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.68-7.36$ (15 H , $\mathrm{m}, \mathrm{Ph}-\mathrm{H} \times 3$), $5.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 5.38(1 \mathrm{H}$, dd, J = 10.0, $2.0 \mathrm{~Hz}, \mathrm{H}-24$), $5.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26), 4.94(1 \mathrm{H}, \mathrm{br}$ s, H-26), 4.86 ($1 \mathrm{H}, \mathrm{br}$ s, H-1), 3.55 (3H, s, MeO-28), 3.68, 3.53, 3.47 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 3$), $2.53(1 \mathrm{H}$, ddd, J $=12.5,4.5,4.0$ $\mathrm{Hz}, \mathrm{H}-2), 2.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-5), 1.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=12.5,12.0,2.0 \mathrm{~Hz}, \mathrm{H}-2), 1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 27), 1.50 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-23$), 1.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29$), 0.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18$), $0.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.77\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21\right)$, $0.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19), 0.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right)$; HRFABMS $\mathrm{m} / \mathrm{z} 1173.4735$ (calcd for $\mathrm{C}_{61} \mathrm{H}_{71} \mathrm{~F}_{9} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 1173.4750$).
(S)-MTPA ester of methyl quadrangularate M(10c): col orless amorphous solid; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.60-7.38$ (15 H , $\mathrm{m}, \mathrm{Ph}-\mathrm{H} \times 3$), $5.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-3), 5.34(1 \mathrm{H}$, dd, J $=10.0,2.0 \mathrm{~Hz}, \mathrm{H}-24)$, 4.94 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-26$), 4.90 ($1 \mathrm{H}, \mathrm{br}$ s, H-26), 4.86 (1H, br s, H-1), 3.63 (3H, s, MeO-28), 3.60, 3.56, 3.45 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 3$), $2.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}$, $\mathrm{H}-5$), 2.43 (1 H , ddd, J $=12.5,4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2$), 1.83 ($1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=12.5,12.0,2.0 \mathrm{~Hz}, \mathrm{H}-2), 1.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 1.61(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-27\right), 1.56$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23$), 1.17 (3H, s, $\mathrm{H}_{3}-29$), 0.88 ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-18\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 0.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5$
$\mathrm{Hz}, \mathrm{H}-19), 0.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 0.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-19)$; HRFABMS m/z 1173.4744 (calcd for $\mathrm{C}_{61} \mathrm{H}_{71} \mathrm{~F}_{9} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 1173.4750).

Cytotoxic Assay. Cellular viability in the presence and absence of experimental agents were determined using the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (Sigma, St. Louis, MO) assays, as described previously. ${ }^{29}$

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1 a}-\mathbf{4 a}, \mathbf{6 a - 8 a}, \mathbf{1 2 a}, \mathbf{1 3 a}, \mathbf{2 b}$, and 12b. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Pettit, G. R.; Singh, S. B.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F. J. Med. Chem. 1995, 38, 1666-1672.
(2) WHO Regional Office for the Western Pacific Malina, and Institute of Material Medica Hanoi. In Medicinal Plants in Vietnam; Tran, K., Ed. Science and Technology Publishing House: Hanoi, 1990; p 119.
(3) Banskota, A. H.; Tezuka, Y.; Phung, L. K.; Tran, K. Q.; Saiki, I.; Miwa, Y.; Taga, T.; K adota, S. Bioorg. Med. Chem. Lett. 1998, 8, 3519-3524.
(4) Stampoulis, P.; Tezuka, Y.; Banskota, A. H.; Tran, K. Q.; Saiki, I.; K adota, S. Tetrahedron Lett. 1999, 40, 4239-4242.
(5) Intraperitonial injection of D-galactosamine ($700 \mathrm{mg} / \mathrm{kg}$)/lipopolysaccharide ($10 \mathrm{mg} / \mathrm{kg}$) to mice elicited liver injury, with the blood serum alanin aminotransferase (ALT) raised to $1883 \pm 554 \mathrm{U} / \mathrm{L}(\mathrm{n}=10)$, while subcutaneous adminstration of the MeOH extract at $50 \mathrm{mg} / \mathrm{kg}$ lowered the serum ALT level to $473 \pm 106 \mathrm{U} / \mathrm{L}(\mathrm{n}=10)$.
(6) Dal canale, E.; M ontanari, F. J. Org. Chem. 1986, 51, 567-569.
(7) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H.; J. Am. Chem Soc. 1991, 113, 4092-4096.
(8) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143-2147
(9) Babler, J. H.; Martin, M. J. J. Org. Chem. 1977, 42, 1799-1800.
(10) Kitajima, J.; Kimizuka, K.; Tanaka, Y. Chem. Pharm. Bull. 1998, 46, 1408-1411.
(11) Greca, M. D.; Fiorentino, A.; M onaco, P.; Previtera L. Phytochemistry 1994, 35, 1017-1022.
(12) Kusano, G.; Idoji, M.; Sogoh, Y.; Shibano, M.; Kusano, A.; I washita, T. Chem. Pharm. Bull. 1994, 42, 1106-1010.
(13) Kusano, A.; Shibano, M.; Kusano, G. Chem. Pharm. Bull. 1995, 43, 1167-1170.
(14) Pegel, K. H.; Rogers, C. B. J. Chem. Soc., Perkin Trans. 1 1985, 17111715 .
(15) Osborne, R.; Pegel, K. H. Phytochemistry 1984, 23, 635-637.
(16) Rogers, C. B. Phytochemistry 1989, 28, 279-281.
(17) Facundo, V. A.; AndradeC. H. S.; Silveira, R.; Braz-Filho, R.; Hufford, C. D. Phytochemi stry 1993, 32, 411-415.
(18) Ganzera, M.; Ellmerer-Muller, E. P.; Stuppner, H. Phytochemistry 1998, 49, 835-838.
(19) Yoshimitsu, H.; Hayashi, K.; Kumabe, M.; Nohara, T. Phytochemistry 1995, 38, 939-942.
(20) Achenbach, H.; Frey, D. Phytochemistry 1992, 31, 4263-4274.
(21) Rogers, C. B. Phytochemistry 1998, 49, 2069-2076.
(22) Ramchandra, P.; Basheermiya, M.; Krupadanam, G. L. D.; Srimannarayana, G. J. Nat. Prod. 1993, 56, 1811-1812.
(23) Teresa, J. D. P.; Urones, J. G.; Marcos, I. S.; Basabe, P.; Cuadrado, M. J. S.; M oro, R. F. Phytochemistry 1987, 26, 1767-1776.
(24) Koeda, M.; Aoki, Y.; Sakurai, N.; K awai, K.; Nagai, M. Chem. Pharm. Bull. 1994, 42, 2205-2207.
(25) Wasserman, H. H.; Ives, J. L. Tetrahedron 1981, 37, 1825-1852.
(26) Fourrey, J . L.; Rondest, J.; Polonsky, J. Tetrahedron 1970, 26, 38393847.
(27) Cabrera, G. M.; Seldes, A. J . Nat. Prod. 1995, 58, 1920-1924.
(28) Ohnishi, Y.; Sakamoto, T.; Fujii, H.; Kimura, F.; Murata, J.; Tazawa, K.; Fujimaki, M.; Sato, Y.; K ondo, M.; Une, Y.; Uchino, J.; Saiki, I. Tumor Biol. 1997, 18, 113-122.
(29) Banskota, A. H.; Tezuka, Y.; Prasain, J. K.; Matsushige, K.; Saiki, I.; Kadota, S. J. Nat. Prod. 1998, 61, 896.

NP990336Q

[^0]: * To whom correspondence should be addressed. Tel.: 81-76-434-7625.

 Fax: 81-76-434-5059. E-mail: kadota@ms.toyama-mpu.ac.jp.
 ${ }^{\dagger}$ Institute of Natural Medicine, Toyama Medical and Pharmaceutical University.
 ${ }^{\ddagger}$ National University, Ho Chi Minh City.
 ${ }^{\text {§ }}$ National Research Institute of Police Science.

